
Convergence and Stability of
Iterative Queueing Network Models

.
Subhash C. Agrawal

&
Peter J . Denning

July 1984
itevised November i384

13 n P S W F C ~ _. Institute for Adranccd Computer Scieuce

L

.
I

RIACS TR 84.7

(NASA-CR-187294) CONVERGENCE AND STABXLITY N90-71374
O f XNTERATIVE QUEUEING NETWORK MODELS
(Research I n s t , for Advanced Computer
Science) 39 p Uncl as

0 0 / 6 2 0 2 9 5 3 7 5

Research Institute for Advanced Computer Science

- 1-

Convergence and Stabiiity of
~ Iterative Queueing Network Models

Subhorh C. Agrawal
BCS Syrtenu, Inc.

&
Peter J. Denning

Research Zwtdute for Advanced Computer Science

.
RIACS TR 84.7

July 1984
Revised November 1984

A clarr of iterative rolutwnr to queueing network modelr u analyzed for rtabditp and convergence.
We prove that, when the iteration function u monotone increoring in ita argument, there d l be at
k a r t one eonacrgent iolrtwn. Thi. theorem ie w e d to demowtratt the convergenee of three itera-
tive mod& fom the literature: the Jaeobron-Lazowrka rurrogate reloer model, the Bard-Schwedzer
mean value model, and the Sew& rhadow CPU model. The fi"t two mode& have a unique rolr-
4.-.." ...,...
rate function, m a y cdibit no rohtwn. We conjccbre that the monotonieit~ of the rhadolp.CPU
iteration function of any queueing network ir guaranteed when all reloerr in the network are r u b
lanear. T h e r e behaviorr w e illurtrated with rimdation rerdtr.

?%E ddtxi CPL' imide: m y cdribii muiiipie roiuiww or, ij one 4erver har a rupetianear

Work reported herein WM supported in p u t by Contract NAS2-11550 from the
National Aeronautics and Space Adminhtmtbn (NASA) to the

Universitia Space R a c u c h Aroeiation (USRA) and in put
by NSF Grant MCSBl-01729 at Purdue Univmity.

R U C S u located at the NASA A m a Research Center
at Moffett Field, California.

Authors' present ddrcua:
Subhuh C. Agraral, BGS Syltcmr, Inc, One University M i c e Park, Waltbnm, MA 02254.

Peter J. Denning, RUCS, Mail Stop 230-5, NASA A m a Research Center, Moffett Field, CA 94035
(ARPANET address: denninflrks).

- 2 -

Convergence and Stability of
Iterative Queueing Network Models

Subhash C. Agrawal
BGS Systems, Inc.

k
Peter J. Denning

Research Institute for Advanced Computer Science

July 1984
Revised November 1984

1. INTRODUCTION

Many computer systems exhibit behaviors so inhomogeneous that no direct product form

queueing network model can accurately estimate throcghput and response time. Examples are

simultaneous resource possession, preemptive priorities, serialization on software locks, and

blocking on full b&ers.

To deal with these cases, performance analysts have been studying how to repment inho-

mogeneous behavior with special, possibly nonphysical, servers in a product form model. The

parameters of the new servers are unknown and may be calculated by iteratively refining guesses;

product form algorithm are used to obtain fast solutions of the model at each cycle of the itera-

tion. On convergence, the performance metrics of the frnd product form solution are

transformed to solutions of the original system.

An example is the “surrogate server’’ method devised by Jacobson and Lazowska

[JACO82]. They used delay servers t o model the extra queueing caused by jobs waiting for ser-

vice from a secondary resource while holding a primary resource. Another example is the “sha-

dow CPU” method of Sevcik [SEVC77]. He split a CPU serving high- and low-priority jobs into

two, with the low-priority CPU’s service time a degraded value of the original CPU’s low-

priority service time. In both these cases, guesses of the parameters of the extra servers were suc-

cessively improved by using the solution of the modified, product form queueing model a t each

iteration step.

Iteration arises in other ways as well. The Bard-Schweitzer approximation to the mean-

value equations for product form networks are solved by calculating a series of guesses of the

device queue lengths IBARD79, SCHW791.

These and other iteration models have left several fundamental questions unanswered. Is

there a general principle that explains when an iterative solution will arise? Will the iteration

converge? If so, is the solution unique? Are there physical interpretations of multiple solutions?

This paper explores these questions. Section 2 defines a modeling schema in which iteration

arises; this schema covers a wide variety of practical cases. Section 3 presents conditions on the

iteration function that guarantee convergent solutions. Section 4 applies this result t o obtain

short proofs of convergence for the Jacobson-Lazowska, Sevcik, and Bard-Schweitzer models.

Section 5 shows that the shadow CPU model may have multiple solutions. A simulation model

verifies the physical significance multiple solutions. A system with a “superlinear” server (not

likely to be encountered in practice) may have no solution at all.

1.1. Related Work

Several other authors have recently considered the convergence of iterative algorithms for

queueing network models. The comprehensive paper by de Sousa e Silva et al. considers itera-

tions arising in the class of “device-complement” models [deS083]. In thii class, a network is

modeled by a collection of subnetworks, each consisting of one of the original servers and an

equivalent server representing the rest of the original network. The parameters of the equivalent

server in one subnetwork are derived from the performance measures of the other subnetworks.

Starting from initial guesses of the performance measures, each of the subnetworks is solved

again in turn until some convergence criterion is attained. The authors formulate the iteration

as a noniinear fued-point equation and state that standard techniques of namerical analysis can

be applied in specific c a s e to determine whether there is a unique, stable solution. They also

present a new iterative solution for multiple-class networks.

Eager and Sevcik JEAGE831 and Agrawal [AGRAM] independently discovered proofs that

the Bard-Schweitrer approximation converges for given initial conditions.

Galler and Bos derived an iterative approximation for the performance measuru of a

single-class database system in which transactions can block one another [GALLbSj. They for-

mulated the convergence question as I fued-point problem and showed that their method pro-

duces unique solutions under realistic conditions.

Agrawal proposed a unified framework for the modeling procases associated with queueing

networks JAGRAM]. He showed that fued-point equations arise frequently in these processu

and developed techniques for proving convergence of the solutions. This paper is based largely

ox! that work.

2. AN ITERATIVE SCHEMA

An analysis of a computer system usually starts with an initial model, M,, whose solution

exists and is known to be sufficiently accurate. But because the equations of M, are typically

too expensive for a direct solution, the analyst usually transforms M, into a simpler model, A4 ,

whose inexpensive solution approximates that of M,.

For example, Mi can denote the global balance equations over the system's state space and

M can be a product form queueing network model. Direct solution of M, is normally too expen-

sive or infeasible whereas direct solution of M is normally cheap and efKcient. The accuracy of

M's approximation to Me's solution depends on the extent to which M, satisfies network homo-

geneity, the property that the flow rate between a pair of servers depends only on the queue

length at the source.

Figure 1 illustrates these ideas. The original model, M,, is mapped by a forward transfor-

mation, F , into a simpler model, M , whose solution is mapped backward as an approximation

by the reverse transformation, R . The equations arising from this diagram have the form

where

p,, p - Parameters of M o and M , respectively

0 0 , 0 - Solutions of M o and M , respectively

SOLVE(M, P) - An algorithm that calculates the

solution of M given parameter values P

This schema is very general. It says nothing specific about the F , R , or SOLVE m a p

pings. The equations arising in specific cases can be straightforward (as later examples in this

paper will show) or quite complicated (as in the Galler-Bos model [GALL83]). The solutions

denoted by Q o and Q will he some subset of standard performance metrics such as utilizations,

throughputs, response times, queue lengths, and steady-state probabilities.

Let us illustrate the schema of Figure 1 with two examples. The fvst is the product-form

queueing network model. In this case, model M , is a system of flow balance equations over the

system’s states and model M is.a system of flow-balance equations whose solution has the pro-

duct form. The forward mapping, F , determines the values of one-step mean service times and

visit ratios, Si and Vi , according to the network homogeneity assumption. The solver,

SOLVE(A4, P), denotes any one of the queueing network solution algorithms, such M normalis-

ing constant analysis or mean value analysis, that evaluates the equations in terms of the param-

eters Si and V i . The reverse map, R , is an identity.

O n gi nal Model

Transformed Model
(more abstract)

FIGURE 1. Basic Modeling Process.

- 6 -

The second example is Sevcik’s shadow CPU model. Figure 2(a) shows the original system,

in which high-priority (H) jobs and low-priority (L) jobs use the same CPU; H jobs preempt L

jobs a t the CPU. Figure 2(b) shows Sevcik’s transformation, which splits the original CPU into

two, one for H jobs and the other for L. The service time of CPU-H is the same as in the origi-

nal system because H jobs never wait for L jobs. All the other parameters of the network are the

same as in the original system. However, the service time of CPU-L is degraded from the origi-

nal CPU’s service time for L jobs, S, , to reflect the effect of preemption:

where U, is the utilization of the original CPU by H jobs. Note how the forward mapping for

S, ’ depends on both a parameter (S,) and a metric (U,) of the original model.

Because the utilization U, is initially unknown, Sevcik’s algorithm solves the split-CPU

model iteratively to construct a series of trial utilizations, UH (01, v,(l)
vergent solution. Since U, is the only unknown in the forward mapping, a complete solution of

. . . in search of a con-

Equations (1) converges when U, converges.

The Shadow CPU example illustrates a common aspect of modeling: components of the

solution of one model can become components of the parameters of another model. The notation

of Equation (1) is purposely general to make this clear.

In general. when the parameters of M depend on the unknown performance metrics Q o ,

iteration can be used to refine successive guesses of Q into a solution. When a single unknown

metric, z of Q o , is required to compute the parameters of M , the schema is:

n

4-b LA-A-1 LA

L

H
1 - u

(b) Model M .

FIGURE 2. Seucik's Shadow CPU Model.

- 7 -

1. Initialize: z* := z (0)

2. Repeat { z := z*

P := F (P 0 , Qo-{z) , 2)

Q := SOLVE(M, P)

8 0 := R (O))

until 1 z - z * 1 <

3. Output Q o

This procedure generates a sequenie of estimates Q ' O) , Q"), Q(2) , . . . until an error measure

between successive estimates of the unknown metric is sufficiently small.

In the most abstract terms, this iteration schema is attempting a solution of the nonlinear

fmed-point equation

and R, (Q) denotes the projection of z from set Q .

The same schema can be generalized to iterations involving two or more unknown perfor-

mance metrics. We will not consider this further here.

As part of the construction of a model according to the schema of Figure I , the analyst

must ask:

1. For the given F , R , and SOLVE, does the iteration function I have any solution?

2. Ifso, will the Algorithm (3) converge?

3. Is the solution unique?

- 8 -

The next section characterires the answers to these questions for a large class of practical sys-

tems.

3. CONDITIONS FOR CONVERGENCE

There are two basic approaches to proving that an iterative algorithm converge to a solu-

tion. The fvst is a direct application of the definition of convergence: sbowing that the sequence

of estimates resulting from a given initial condition are successively closer t o a given limit point.

This idea underlies Theorem 1, below. The second is indirect: showing that the iteration function

has properties sufficient to force any sequence of estimates resulting from an allowabk initial

condition to close on a limit point. This idea underlies Theorem 2, below. When applicable, the

second approach is the more powerful because it relates the given F , SOLVE, and R mappings

t o the convergence question. The goal of this section is a general characterization of the second

approach under realistic conditions.

These two basic approaches are stated below as theorems. They apply to a wide range of

practical problems because performance metria are often monotonic and bounded - for example,

the throughput is usually a strictly increasing function of any device’s utilization [SURISS] and is

bounded between 0 and a constant determined by the bottleneck device’s maximum service rate

[DENN78]. In the following discussion, we seek a solution to I = Z (r) in the range [L , U]

where L < U.

Theorem 1. Monotone Bounded Sequence Thcanm.

Suppose the algorithm generates estimates I,,, tl, - * - such that zi < U and, for i > k ,

2 zi . Then the algorithm converges.

Sketch ofPr00f: If zi+l = ti for i > k , the algorithm obviously converges. Assume

ti +1 > s i , let di = U -zi , and note that di > 0 and di > di+l. Then

- 9 -

which implies the algorithm converges.

Corollary: If zi 3 L and zifl < zi for all i > k , the iteration converges.

Theorem 2 is based on a classical result from numerical analysis, which gives a sufficient

condition for a convergent iteration function [STOESO]. A solution z t o z = I(.) is called a

“fued point” because the sequence of estimates of z will be fmed (at z) if ever one of the esti-

mates equals z . A solution z is stable if the successor of each estimate is closer t o z (i.e.,

I I (zi) - z j

not be found by iterative algorithms because the successive estimates will diverge from it. An

unstable futed point cannot be observed in a physical system outside of a short observation inter-

val because any small change will cause the system’s state t o drift away from that operating

point.

< 1 zi - z 1); otherwise the solution is unstable. An unstable fured point can-

Figure 3 illustrates the basic result from numerical analysis. If the solution z to z = I (.)

lies in the interval [L , U 1 and the magnitude of the derivative, 1 I ’(z)(, is less than I in that

interval, the iteration will converge to I. In the figure, an estimate zi < E will generate a next

estimate zi +1 = I (zi) closer to z . (A similar statement holds for an estimate zi > z .) If the

iteration function is not monotone increasing but 1 I ‘(z)l < 1,

of z from zi , but will still be closer.

may be on the opposite side

While the iteration functions for most queueing network models are bounded mootone, and

continuous, they we seldom well enough behaved for this basic result t o apply (AGRA83,

SURI83!. In general, the entire range of z-values will be partitioned into subranges that alter-

nate between I(.) having slope less than 1 and slope greater than 1. If y = I(.) crosses y = z

in a subrange of slope less than 1, that crossing will be a stable fmed point; other crossings will

be unstable.

Y

L
x i

FIGURE 3. Basic Numerical Result.

U

- 10-
Theorem 2. Monotone Bounded Function Theorem.

Suppose that I (z) is monotone increasing, bounded, and continuous on the interval

I L , V] . S u p p o s e I (L) > L a n d I (U) < U . Then:

1. There is at least one stable fvted point in (L , U 1 and

2. Stable and unstable fvted points alternate.

Sketch of Proof. Figure 4 illustrates that a continuous bounded curve that lies above

the 45-degree line for z = L and below that line for z = U must cross that line an odd

number of times. A crossing may be called a down (up) crossing if I (.) passes from

above the line to below (or below to above) as z increases. Down- and upcrossings must

alternate. In Figure 4, zl, z S , and z g are down-crossings while z 2 and z , are upcrossings.

The slope of the monotone increasing function I (.) is everywhere a t least 0. Near a

down-crossing, I '(z) must be less than 1, the slope of the 45-degree line. Near an u p

crossing, I '(2) must be greater than 1. The basic numerical result then implies that the

down-crossings are stable fvted points and the upcrossings are unstable.

The theorem holds even when I (z) is tangent to y =z ; in this case a point of

tangency will be both a stable frxed point and an unstable futd point, depending on the

direction of approach.

Corollary. Theorem 2 also holds when I (L) = L or I (U) = U

Sketch of Proof. ff I (L) = L , then zl = L . If z 1 is a down-crossing, Theorem 2 obvi-

ously holds; if zI is an upcrossing, there must be a down-crossing z 2 < U on the path

from I (. ? :) t o I (u) . Similarly,.ifl (u) = u , then zk = u . If zk ki a down-crossing,

Theorem 2 obviously holds; if zk is an upcrossing, there must be a down-crossing

zk -1 2 L on the path from I (L) t o I (z k -) .

L U

Figure 4. illustrating Theorem 2.

- 11-
The uniqueness of the solution for a network whose iteration function is known and satis-

fies the conditions of Theorem 2 is easy to test. Let zL and zu denote solutions obtained by

starting with initial guesses z o = L and zo= U respectively. If zL = zu , the solution is unique.

Otherwise the remaining solutions can be found by using the bisection method on the interval

(zL zU) and repeating the procedure in each subinterval.

The property expressed by Theorem 2 has been discussed by Courtois for the special case of

throughput functions of multiprogrammed virtual memory systems ICOUR'IB, COUR??]. It has

also been used by Galler and Bos in their proof of convergence of their approximation for tran-

saction blocking in database systems iGALL83].

4. CONVERGENCE PROOF EXAMPLES

This section will outline convergence proofs for three iteration schemata discussed in recent

queueing network literature. The fvst example is the Bard-Schweitzer mean-value equations; this

example falls within the scope of the first theorem. The second and third examples are the

Jacobson-Lazowska surrogate server method and Sevcik's shadow CPU model; they fall within

the scope of the second theorem.

4.1. Bard- Sc hw ei toer MV A Approxima tion

The Bard-Schweitzer equations are an approximation to the equations of mean value

analysis (MVA) for solving product-form queueing networks [BARD?S, REIS80, SCHW?S].

There are four equations for each i -1, ..., K :

- 12 -

N -1

N R, := S, (1 -t - 'i 1

K

x , := N / V j R j
j =l

ii, * := V i R i X ,

Starting with the initial condition Ti, * := .V /K , t h a e SK $1 equations are evaluated repeat-

edly until all I iii * -4 I < c. The symbols denote physical quantities as follows:

iii = mean queue length at device i

R, = mean response time per visit t o device i

S, = mean service time at device i

Vi = visit ratio for device i

X , = throughput of system

N = number of jobs in system

K = number of devices in system

These equations are an instance of the general model of Figure 1. The original model M,

has R, = Si (l+iiAi), where iiAi is the m'ean queue length seen by arrivals. According to the

arrival theorem !BUZEBo], the mean queue length seen by arrivals is the same as the overall

mean queue length,, with the population reduced by 1 - that is, KAi (N) = iii (N -1). A derived

model, M , is used t o determine an estimate of iii (N -1) from iii (N); Schweitrer chose

N - 1

N
- iii (N) JBARD79]. The Mean Value Analysis equations result when the equation for

model M is substituted into the equations for model M,.

- 13-
Until recently, no proof of convergence of this algorithm had been known. Then Eager-

Sevcik and we independently showed that a unique solution is guaranteed for certain initial con-

ditions. Eager and Sevcik assumed that initially all N jobs are enqueued at the bottleneck dev-

ice iEAGE83J; their proof exploits the fact that the sequence of queue length estimates is mono-

tonic. Their proof does not handle the initial condition stated in the algorithm given above. h

their paper, de Sousa e Silva et 01. showed the existence of a feasible solution for the multiclass

version of this approximation but did not prove convergence [deS083].

Appendix I contains a detailed convergence proof for the algorithm as stated. The idea is

as follows. The iteration function of this algorithm is

-
fli = Z(El, . . ., EK)

N -1

N
NDi (l+-iii)

..
- - for i -1, ... ,K

N - 1

N

K

D j (l+-iij)
j =1

where Di = Vi S i . Without loss of generality, assume D < D , <

- (0)
ni

- . < D , . Let

= N /K , and ii;"), K;(*), ..., denote the sequence of mean queue length estimates at

device i . Because this sequence is ultimately monotone and is also bounded (between 0 and N),

Theorem 1 implies it converges. The same technique can be used for other initial conditions.

4.2. Jacobson-Lazowska Surrogate Server Method

Consider a system in which each job follows the behavior cycle:

- 14-

use A
request B
while holding B repeat until done

{ request C
use B,C
release C}

release B

(See Figure 5(a).) Ordinary queueing networks cannot model this case because they assume each

job holds only one resource at a time.

Jacobson and Lazowska analyzed this system with a pair of models (Figure 5(b))

IJACO82i. The idea is that model M , replaces the B C subsystem with an equivalent server E,

and a delay server; E, is flow-equivalent to the B C subsystem with C removed and with service

time SE, equal to S,, , the sum of the B service and nonoverlapping C service. The delay strver

represents g,, the delay caused by queueing for the C resource; g1 is estimated by model M,.

Model M, also contains an equivalent server E, and a delay server. Server E, is flow-

equivalent t o the BC subsystem assuming no queueing occurs for B (Le., assuming B is a pure

service &!ai.). The de’ 18). -- server - - represents q 2 , che deiay caused by queueing at the B resource; g,

is aimated by model M,.

Initially, the queueing delays g I and gt are unknown; they are determined iteratively by

this algorithm:

.. "
Subsystem permitting simultaneous

possession of resources 6 and C

A L
-7

(8) Model M

Ib) Model M

f IGURE 5. Jacobson-L8zowska Surrogate Seruer Model.

- 15-

set q l f = O

repeat {

set = Q,*

SOLVE M, for RE
1

Note that Y and Y , are in general very complex functions of the model parameters. Nonetho

less, only q1 and q , change during the iteration. Therefore, for the purpose of analyzing the

iteration. we can regard Y : and Y , as functions only of Q, and q,: respectively. Thus the itera-

tion function is

Assuming that the service r a t a of A, B, and C are nondureasing with respect to their queue

lengths,

which implies

Since q 1 and qt are both nonnegative, and since q1 is maximum when q , is zero, the Monotone

Bounded Function Theorem (Theorem 2) implies that the algorithm will converge.

- 16-

Jacobson and Lazowska gave a longer proof based on the principles of Theorem 1.

4.3. Sevcik’s Shadow CPU Method

Product form queueing network models cannot represent servers that give priority to some

job classes. Sevcik’s method of replacing a CPU with two priority levels with two CPU’s was

discussed in Section 2 (SEVC771. The iteration function is

The derivative of this function is [AGRAas]

This derivative is not, in general, less than 1 in magnitude everywhere. This is because both fac-

tors U,,/(l-UH) and ~ ~ (N L , N H - l) - ~ ~ (N L I N H) maybo thbegrea te r than l . Thesecond

factor can be greater than 1 because adding a job to the H class can increase congestion else-

where in the system and reduce the number of L jobs a t the CPU. The best we can hope for is

that the second factor is nonnegative, implying that the derivative is nonnegative and (by

Theorem 2) at least one stable fured point exists.

We conjecture that a sufficient condition for nonnegative derivative is that the rest of the

network include only servers whose overall service-rate functions do not rise “superlinearly,” Le.,

they obey the constraint

where p (n) is the server’s rate when the overall queue length is n . If a superlinear server is in

the network, removal of a class H job may lead to much reduced service rate a t that server. This

will produce an increase in the class L transit time through the rest of the network, reduce the

- 17-
class L queue at the CPU, and make the derivative in Q. (5) negative. The reasoning behind

this statement is outlined in Appendix 11.

A superlinear server is, in effect, a “standby capacity” server that suddenly provides a

sharp increase in resources when the queue length becomes sufficiently long. Such scrvcrs are not

encountered in real systems. Real servers are typically fued-rate servers, multisnvers, delay

servers, processor-sharing servers, servers whore rates increase less than linearly with queue

length, and servers whose rates decrease with queue length. The generality of this class explains

why the iteration function for the Sevcik model is monotone and why no one has found a practi-

cal system for which this model diverges.

Figure 6 shows a the parameters of a simple, two-station cyclic network with fmed rate

servers. The Sevcik iteration function for this network has only one fued point.

Figure 7 shows another network whose iteration has three fued points; by Theorem 2, only

two of them are stable. The iterative algorithm will converge on a solution that depends on the

initial guess, V i o) . For example, Vio)=O will cause convergence to the smaller solution,

Un = 0.34; U,(’)=l will cause convergence to the larger solution, Un = 0.95. Neither of these

solutions is close to the value of U, = 0.66 obtained by solving the exact model, the global bal-

ance equations. These two solutions, however, have a physical interpretation; we will report

below on simulation results that indicate the system is bistable with two possible operating

points.

5. ANOMALIES

Two types of anomalous behavior can be encountered with iterative algorithms: divergence

and multiple stable fmed points. These behaviors will be explained below and illustrated with

examples in the Shadow CPU model.

1.
I

. 6 a

. 6

. 2

0.
0.

I

. 4
. 2

.8
. 6 1 .

Current estimate of U c p u - ~ , ~

NETWORK PARAMETERS

CLASS Y , S , v,s, N
ti 1 .o 1.0 1
L 1.0 1.0 5

FIGURE 6. Two-station Shadow CPU network with one stable fiHed point.

1.

.8 m
m

1
3
QI

-

.*
)r
0

Q

d
I

4
W

4

. 4

Q

4
n
Q)

= . 2

0.
0 .

. 2 . 6 1 .
Current estirate of U c p u - ~ , ~

H 1 0.1 1 0.005 1
L 1 0.05 21 0.005 40 . .

FIGURE 7. Two-station Shadow CPU Network with two stable fiHed points.

- 18-

5.1. Divergence

If the derivative of the iteration function is negative in some range. the function is not

monotone increasing and Theorem 2 may not apply. An iterative algorithm may fail t o find any

solution for such a network. As noted above, such a network must contain a superlinear server.

Figure 8 shows the parameters of a two-station cyclic network including a superlinear

server with rate function

{ p (n) , n =1, ... :6} = {1,1,1,1,1,1000} .

The iteration function has a negative slope everywhere. The function has one unstable fured

point. Hence the iterative algorithm will suffer oscillatory divergence.

5.2. Multistable Fixed Points

Figure 7 showed an instance of a network having two stable solutions; the iterative algo-

rithm can find either one depending on the initial guess of U, . Do these fixed points represent

physically observable phenomena, or are they a defect of the modeling technique?

To answer this question, we simulated the network of Figure 7 for 10,000 simulated

seconds. A trace of the class H CPU utilization (U,) over each 5-second interval is displayed in

Figure 9. (Class H CPC' service time per visit, S, , is 0.1 seconds and Class L CPU service time

per visit, S, , is 0.05 second.) While U, is normally around 9596, the system occasionally enters

the state in which U, is low (about 35%) for a significant period. We conclude that the two

stable values of U, predicted by the model are both stable .operating points in the corresponding

real system.

Figure 10 shows the probability distribution for the network. Curve C is the marginal

CPU queue length distribution for Class L. It has two well-defined peaks. The right peak occurs

when almost all Class L jobs are queued at the CPU; in these states the Class H job experiences

1.

8

. 6

. 4

. 2

0 .
0 .

I

. 2
. 8

. 6
Current estirate of UCPU-H,H

NEXWORK PARAMETERS

CLASS Y,S, v,s* N
H 10.0 10.0 2
L 1.0 1000.0 5

IZht.o(n) = 11, 1, 1, 1. 1. IOOOj

1 .

FlCURE 8. Two-station Shadow CPU network with no st-able fiHed point.

3
n u
rn . 4
m
m

rl
Q

0. - 2 L I sec. I

1 I
1
I

2 50 2 89 30 391 75
28500 38925 33425

0

Time

Each sample indicates CPU utilization in the preceding
5 second interval. C P U utilization during the intervals
250 - 28500 and 28930 - 38925 seconds was about 95X.

FIGURE 9. Simulation trace of Class H CPU utilization for the model of Figure 7,
showing both utilizations occurring in different interuals.

* a 5

e 4

b . 3
3
.c(
H

P
Q
P
0

- 9 " 2

. 1

.
c
B

4 12 - 20 28 36

FIGiURE 10. Probability distribution o f obserued Class H
utilization for the model of Figure 7.

- 19-

little contention at Server 2 allowing both throughput X, and utilization U, t o be high. This

fact is demonstrated by the dominance of the conditional probability distribution curve B

(P (N I L 1 NIH =1)) over the conditional probability curve A (P (NIL 1 N,, SO)). The

opposite behavior occurs a t the left peak when almost all Class L jobs are queued at Server 2. In

this case. the Class H job experiences significant delay at Server 2 because prioritia are not

honored there, forcing both X, and U, t o be low. This argument is supported by the domi-

nance of curve A over curve B on the left side of the picture. The relatively higher right peak

corresponds to the observation from the simulation that the higher class H CPU utilization is

preferred.

These bistable results are reminiscent. of results observed by Courtois for multiprogrammed

virtual memory systems susceptible to thrashing JCOUR75, COUR771. In the high-throughput

(CPU utilization) state, jobs spend little time waiting at paging devices. In the thrashing state,

the page wait time increases sharply and throughput decreases. Figure 11 helps visualize the

problem. The horizontal axis is n , the number of thinking terminals. The straight line

X(N - n) denotes the arrival rate of work to the central subsystem when n jobs are active

(N - n jobs are thinking) and the think time is 1 / X . The curve p(n) denotes the output rate of

the central subsystem. The equation

X (N - n) = p (n)

expresses a form of flow balance. For certain choices of the parameter X there will be three fmed

points (compare with Figure 7). The down-crossings, zl and z S are stable while the up-crossing

z 2 is unstable. The system will have a high probability of being observed with n near z 1 or z s

and a low probability of being observed with n near z2.

FIGURE 11. Application o f stability theorem to
uirtual memory system. The straight fine (y=x)
is the arriual rate to the uirtual memoy subsystem
and the iteration function I(H) is the corresponding
output rate.

A n i v a l
Rete x

- 20 -

6. CONCLUSIONS

Iteration arises in the solution of queueing network models when the parameters of a

derived model depend on unknown performance metrics of the original model. Iteration can be

used to refine successive guesses of the unknown metrics until mutually consistent values of

metrics and parameters are found.

There are two basic approaches to establishing whether an iterative model converges to a

solution. One is t o construct the iteration function and demonstrate that the sequence of uti-

mates is bounded and ultimately monotonic. The other is t o show that the iteration function is

itself bounded and monotonic. in which case iterative solutions are guaranteed to converge. We

applied these methods to prove the convergence of the Bard-Schweitzer approximate MVA equa-

tions, the Jacobson-Lazowska surrogate server model, and Sevcik’s shadow CPU model.

We also showed that, in general, a model with monotone iteration function may have more

than one convergent solution. Which one is obtained depends on the initial conditions. We used

the shadow CPU model to illustate that multiple stable solutions exist and have physical

interpret at ions.

We argued that the shadow CPU model can be divergent for all initial conditions if at least

one non-CPU server is sufficiently superlinear - i.e., becomes increasingly fast as the load on it

increases. Because such servers are not implemented in practice, we concluded that solutions for

this model applied to practical systems are always convergent. We speculate that this property

holds for any queueing network: real servers, whose service functions are typically concave down-

ward in the queue length, always generate monotone iteration functions.

- 31 -

7. ACKNOWLEDGEMENT

We deeply appreciate comments from Ken Sevcik, which led t o an improved and more com-

plete paper.

8. BXBLXOGRAPEY

AGRA83 S. C. Agrawal, “Metamodeling: a study of approximations in queueing models,”

PhD Thesis, Computer Sciences Department, Purdue University, West Lafayette,

IN 47907, August 1983.

BARD79 Y. Bard, 5 o m e extensions to multiclass queueing network analysis,” in Perjor-

mance of Computer Syrtemr (Arato et al., Eds.), North-Holland, New York (I979),

5 1-82.

BUZE73 J. P. Bnrcn, “Computational algorithms for c l o d queueing networks with

exponentid servers,” Communieatioru A CM 16, 9 (September 1973), 527-531.

BUZESO J. P. Buren and P. J. Denning, “Measuring and calculating queue length distribu-

tions,” IEEE Computer 13, 4 (April 1980), 33-44.

P. J. Courtois, “Decomposability, instabilities, and saturation in multiprogram-

ming s y ~ t e m s , ’ ~ cOWWnUniCO&M ACM18, 7 (July 1975), 371-376.

P. J. Courtois, Decomporability: Queueing and Computer Sgrtem Appl icatklu,

Academic Press, New York (1977).

E. de Sousa e Silva, S. S. Lavenberg, and R. R. Muntr, ‘ L A perspective on iterative

methods for the approximate analysis of queueing networks,” Proc. Zntl Worhhop

on Applied Mathematier and Performance and Reliability of Computer and Comman-

ication Syrtcmr (G. Iazeolla and S. Tucci, Eds.), North-Holland Publishing Co.

(1983).

COURT5

COUR77

des083

- 22-

DENY78 P . J . Denning and J. P. Buzen, “The operational analysis of queueing network

models,” Computing Surveys 10, 3 (September 1978), 225-261. .

EAGE83 D. L. Eager and K. C. Sevcik, “An analysis of an approximation algorithm for

queueing networks,” Department Computer Science, University of Toronto (198s)~

submitted to ACM TOCS.

GALL83 B. I. Galler and L. Bos, “A model of transaction blocking in databases,” Perfor-

mance Evaluation 3, 2 (May 1983), 95-122.

GORDBO K. D. Gordon and L. W. Dowdy, “The impact of certain parameter estimation

errors in queueing network models, Proc. Performance ’80, printed in Performance

Evaluation Review (Summer 1980), 3-9.

P. A. Jacobson and E. D. Lazowska, “Analyzing queueing networks with simul-

taneous resource possession,” Communicationr A CM 25, 2 (February 1982), 142-

151.

M. Reiser and S. S. Lavenberg, “Mean value analysis of closed multichain queueing

networks,” J . ACM27, 2 (April 1980), 313-322.

P. Schweitzer, “Approximate analysis of multiclass closed networks of queues,”

Int’f Conf. on Stochastic Control and Optimization, Amsterdam, Netherlands (1979).

JACO82

REIS80

SCHW79

SEVC77 K. C. Sevcik, “Priority scheduling disciplines in queueing network models of com-

puter systems,” Proc. ZFZP Congrerr 77, North-Holland, Amsterdam (1977), 565-

570.

STOEOO J. Stoer and R. Bulrisch, Introduction to Numerical Analyrir, Springer-Verlag, New

York (1980).

R. Suri, “Characterization of monotonicity in closed queueing networks,” Report

TR-06-83, Center for Research in Computing Technology, Harvard University,

Cambridge, MA 02138 (February 1983).

SUR183

-33-

WILL76 A. C. Williams and R. A. Bhandiwad, “A generating fnnction r-pp~reh tn q ~ c r r -

ing network models of multiprogrammed computer systems,” iVetwork 6 (1976), 1-

22.

9. APPENDIX I - Proof of Convergence OZ Bard-Schweitztr Approldmaticrar

th Let denote the m

Schweitzer iteration function

estimate of the queue length fii obtained from the Bard-

N - 1 (I ND, (l+-iii -- -1))

N
for i -1, ..., K and m >O . - (= I

“i

If we can show that this sequence is ultimately monotonic, we can apply Theorem 1 t o dcduce its

convergence. We will prove a more detailed proposition,from which the desired m u l t follows.

we wig n_se the fellowing notaticc. L:? d”’ = ,e.] f = (m) , . . . , p) denote th€ vezisr of

th mean queue length estimates obtained after the m

the vector of total service demands (Di = Vi Si) for each of the devices; without loss of generality,

iteration. Let D = (D l , . . . , D a) denote

we suppose that D,< . 1 <DK .

Proposition: For all m >O there exists a device index p, (the “partition index”) satbfying:

(a). isp, E> ni(-)<

(b). i > P , => ni(,)> ni(m-l)

As m increases, there will be an ultimate value of p, in the set (1, ..., K }. These statements say

that all the devices numbered l , . . . ,~ , have ultimately monotonic decreasing queue length

- 24 -

estimates and moreover that the values of the estimates are ordered the same as the values of the

total demand.

Proof:

Baris (m = 1) : Substituting Ei(O1 = N /K into the iteration formula,

- (1)
"i

N - 1 N
ND,(lt- -1

N K

K N - 1 N
D j (l + - -)

N X
j =1

N
Di

K

C D j
j =1

(1) Thus the ordering of { Di } implies the same ordering on the { Ki } and Part d is true. Because

the estimates are now unequal and ordered, some of them must be less than N /K . So let p be

the largest device index such that i'i,'') < N /K . Now:

- (1) - (0)

(1) - (0)

a < p l => ni < n l ,

i > p , => ii, > nl , and

P1 > Po = 0.

which establishes Parts a-c.

d m -1) Induction: (1) . We note first that dm) .D > n

transformation from m -1 to m reduces all the ii,.(m-l) for i <p, and adds the total reduction

to the

weight.

OD. This is because (by hypothesis) the

for i >p , , thereby shifting value from terms of I n s weight t o terms of greater .

(2). Next we note that i <p, implies iii("fll< iii(") - i.e., the monotonic decrease contin-

ues. To see this note

-.25 -
where the "<" in the numerator follows from Part a of the induction hyp&e&

the denominator follows from the observation (1) above.

the '5" ... ;-

(3) . The induction hypothesis implies Di <Dj => fii(m)<iij(m). Now, Di <Dj h p l i e s

which establishes Part d.

(m 1 . (4). Next we define P , , , + ~ to be the largest device index i >pm for which iii(m+l)<iii

This means that pm <i <p- +I implies that the device-; mean queue estimate switched from

increasing to decreasing at the m

(1) a queue-length estimate continues to decrease. (h'ote that i fp, has reached its final value,

all iii(m) for i >pm will be monotonically increasing for all larger m .) We may now conclude:

tA iteration. Note pmT1 cannot be smaller than p- because by

- i-4 - i-1 i < p , + , => ni <ni ;

- (=+u>zi(4; and
i ; p , , , -i "i

Pn+l 2 Pn;

as was to be shown. Now the convergence of the Bard-Schweitrer estimator follows from

Theorem 1.

u
Corollary: Let B,,(") denote the system mean response time estimate after the rn

The sequence {R,,(") I m 2 0) is monotonic increasing.

iteration.

Proof: By definition,

A V
j = I

But we showed that the second term in this sum is monotone increasing, which implies that the

entire sum is monotone increasing.

10. APPENDIX II -- Superlinear Servers

We are interested in the class of networks for which the second term in Q. (5) is nonnega-

tive. Consider the queue length at CPl7-L:

= XL s, ’ (I + % (N, -1 ,”))

(AIL 1)

where S, ’ is the class L service time at CPU-L. From (AII.1) it is clear that

ii, (NL ,NH - l) > K L (N, ,NH) whenever

x, (nz, ,” -1) 2 x, (f l L ,”), f lL =1, ..., N, . (AIl.2)

Intuitively, Q. AIL2 will hold if the processing rate (p) for each class a t each server in the

transformed network satisfies the pair of conditions

,

-27-
1

in a product form network, the service rate p of a load dependent server can depend only

on the total local queue length n (=nL +nH). Therefore,

On substituting (AII.3) into (AII.2), we obtain the sufficient constraint for the monotonicity of

Q. (5) of the text:

This constraint is equivalent to the requirement that nS (n), where S (n) is the overall service

function of the server, is nondecreasing in n . It is interesting to observe that this condition b

precisely the constraint on the service function of the central subsystem employed by Galler and

Bos in their proof of convergence of a different system iGALL831. It is also interesting that the

overall mean response time per visit to server i can be written

where pAi is the arrival distribution. The increasing function nS (m) implies that all the mean

response times, cumulative queue length distributions, throughputs, and utilirationa are inereas-

ing with respect to load N. (See ala0 [SURI83.]

